Concept Reinforcement Classify each of the

 following statements as either true or false.1. The largest common factor of $10 x^{4}+15 x^{2}$ is $5 x$.
2. The largest common factor of a polynomial always has the same degree as the polynomial itself. False
3. The polynomial $8 x+9 y$ is prime. True
4. When the leading coefficient of a polynomial is negative, we generally factor out a common factor with a negative coefficient. True
5. A polynomial is not prime if it contains a common factor other than 1 or -1 . True
6. All polynomials with four terms can be factored by grouping. False
7. The expressions $b-a,-(a-b)$, and $-1(a-b)$ are all equivalent. True
8. The complete factorization of $12 x^{3}-20 x^{2}$ is $4 x\left(3 x^{2}-5 x\right)$. False

Tell whether each of the following is an expression or an equation.
9. $x^{2}+6 x+9$ Expression
10. $x^{3}=x^{2}-x+3$ Equation
11. $3 x^{2}=3 x \quad$ Equation
12. $x^{4}+3 x^{3}+x^{2}$ Expression
13. $2 x^{3}+x^{2}=0 \quad$ Equation
14. $5 x^{4}+5 x$ Expression

In Exercises 15 and 16, use the graph to solve $f(x)=0$.

In Exercises 17 and 18, use the graph to find the zeros of the function f.

19. Use the graph below to solve $x^{2}+2 x=3 . \quad-3,1$

20. Use the graph below to solve $x^{2}=4 . \quad-2,2$

21. Use the graph below to solve $x^{2}+2 x-8=0$.
$-4,2$

22. Use the graph below to find the zeros of the function given by $f(x)=x^{2}-2 x+1$.

Solve using a graphing calculator.
23. $x^{2}=5 x \quad 0,5$
24. $2 x^{2}=20 x \quad 0,10$
25. $4 x=x^{2}+3 \quad 1,3$
26. $x^{2}=1 \quad-1,1$
27. $x^{2}+150=25 x \quad 10,15$
28. $2 x^{2}+25=51 x 0.5,25$
29. $x^{3}-3 x^{2}+2 x=0 \quad 0,1,2$
30. $x^{3}+2 x^{2}=x+2-2,-1,1$
31. $x^{3}-3 x^{2}-198 x+1080=0 \quad-15,6,12$
32. $2 x^{3}+25 x^{2}-282 x+360=0 \quad-20,1.5,6$
33. $21 x^{2}+2 x-3=0 \quad-0.42857,0.33333$
34. $66 x^{2}-49 x-5=0 \quad-0.09091,0.83333$

Find the zeros of each function.
35. $f(x)=x^{2}-4 x-45-5,9$
36. $g(x)=x^{2}+x-20-5,4$
37. $p(x)=2 x^{2}-13 x-7-0.5,7$
38. $f(x)=6 x^{2}+17 x+6-2.42013,-0.41320$
39. $f(x)=x^{3}-2 x^{2}-3 x-1,0,3$
40. $r(x)=3 x^{3}-12 x \quad-2,0,2$

Ana! Match each graph to the corresponding function in
⿵ㅡㄹ Exercises 41-44.

III

IV

41. $f(x)=(2 x-1)(3 x+1)$ III
42. $f(x)=(2 x+15)(x-7)$ II
43. $f(x)=(4-x)(2 x-11)$ I
44. $f(x)=(5 x+2)(4 x+7)$ IV

Write an equivalent expression by factoring out the greatest common factor.
45. $2 t^{2}+8 t \quad 2 t(t+4)$
46. $3 y^{2}-6 y$
47. $9 y^{3}-y^{2} \quad y^{2}(9 y-1)$

49. $15 x^{2}-5 x^{4}+5 x$
50. $8 y^{2}+4 y^{2}+4 y^{4}-2 y$
51. $4 x^{2} y-12 x y^{2}$
52. $5 x^{2} y^{3}+15 x^{3} y^{2}$
53. $\left.3 y^{2}-3 y_{3\left(y^{2}\right.}{ }^{9}-y-3\right)$
54. $\left.15 x^{2}-5 x^{2} y^{2} y+5+3 x+5\right)$
55. $6 a b-4 a d+12 a c$
56. $8 x y+10 x z-14 x w$
57. $72 x^{3}-36 x^{2}+24 x$
58. $12 a^{4}-21 a^{3}-9 a^{2}$
59. $x^{5} y^{5}+x^{4} y^{3}+x^{3} y^{3}-x y^{2} \quad 3 a^{2}\left(4 a^{2}-7 a-3\right)$
60. $x^{9} y^{6}-x^{7} y^{5}+x^{4} y^{4}+{ }^{3} x^{3} y_{5}$
61. $\left.9 x^{3} y^{6} z^{2}-12 x^{4} y^{4} z^{4}+15 x^{2} y^{5} z^{3}+x y^{3}+1\right)$
62. $14 a^{4} b^{3} c^{5}+21 a^{3} b^{5} c^{4}-35 a^{4} b^{4} c^{3}$

$$
7 a^{3} b^{3} c^{3}\left(2 a c^{2}+3 b^{2} c-5 a b\right)
$$

Write an equivalent expression by factoring out a factor with a negative coefficient.
63. $-5 x+35-5(x-7)$
64. $-6 y-72$
65. $\begin{aligned} & -2 x^{2}+4 x-12 \\ & -2\left(x^{2}-2 x+6\right)\end{aligned}$
66. $-2 x^{2}+12 x+40$
67. $3 y-24 x$
68. $\left.7 x-56 x^{2}-6 x-20\right)$
$-3(-y+8 x)$, or $-3(8 x-y)$
69. $-x^{2}+5 x-9$
70. $-p^{3}-4 p^{2}+11$
71. $-a^{4}+2 a^{3}-13 a \quad-a\left(a^{3}-2 a^{2}+13\right)$
72. $-m^{10}-m^{9}+m^{8}-2 m^{7}-m^{7}\left(m^{3}+m^{2}-m+2\right)$

Write an equivalent expression by factoring.
73. $a(b-5)+c(b-5)(b-5)(a+c)$
74. $r(t-3)-s(t-3)(t-3)(r-s)$
75. $(x+7)(x-1)+(x+7)(x-2)$
76. $(a+5)(a-2)+(a+5)(a+1)$
77. $a^{2}(x-y)+5(y-x)(x-y)\left(a^{2}-5\right)$
78. $5 x^{2}(x-6)+2(6-x)(x-6)\left(5 x^{2}-2\right)$

Factor by grouping, if possible, and check.
79. $a c+a d+b c+b d \quad(c+d)(a+b)$
80. $x y+x z+w y+w z \quad(y+z)(x+w)$
81. $b^{3}-b^{2}+2 b-2(b-1)\left(b^{2}+2\right)$
82. $y^{3}-y^{2}+3 y-3(y-1)\left(y^{2}+3\right)$
83. $x^{3}-x^{2}-2 x+5$ Not factorable by grouping
84. $p^{3}+p^{2}-3 p+10$ Not factorable by grouping
85. $a^{3}-3 a^{2}+6-2 a \quad(a-3)\left(a^{2}-2\right)$
86. $t^{3}+6 t^{2}-2 t-12(t+6)\left(t^{2}-2\right)$
87. $x^{6}-x^{5}-x^{3}+x^{4} x^{3}(x-1)\left(x^{2}+1\right)$
88. $y^{4}-y^{3}-y+y^{2} \quad y(y-1)\left(y^{2}+1\right)$
89. $2 y^{4}+6 y^{2}+5 y^{2}+15\left(y^{2}+3\right)\left(2 y^{2}+5\right)$
90. $2 x y-x^{2} y-6+3 x \quad(2-x)(x y-3)$
91. Height of a Baseball. A baseball is popped up with an upward velocity of $72 \mathrm{ft} / \mathrm{sec}$. Its height in feet, $h(t)$, after t seconds is given by

$$
h(t)=-16 t^{2}+72 t
$$

a) Find an equivalent expression for $h(t)$ by factoring out a common factor with a negative coefficient. $\quad h(t)=-8 t(2 t-9)$
b) Perform a partial check of part (a) by evaluating both expressions for $h(t)$ at $t=1 . \quad h(1)=56 \mathrm{ft}$
92. Height of a Rocket. A water rocket is launched upward with an initial velocity of $96 \mathrm{ft} / \mathrm{sec}$. Its height in feet, $h(t)$, after t seconds is given by

$$
h(t)=-16 t^{2}+96 t
$$

a) Find an equivalent expression for $h(t)$ by factoring out a common factor with a negative coefficient. $\quad h(t)=-16 t(t-6)$
b) Check your factoring by evaluating both expressions for $h(t)$ at $t=1 . \quad h(1)=80 \mathrm{ft}$
93. Airline Routes. When an airline links n cities so that from any one city it is possible to fly directly to each of the other cities, the total number of direct routes is given by

$$
R(n)=n^{2}-n
$$

Find an equivalent expression for $R(n)$ by factoring out a common factor. $\quad R(n)=n(n-1)$
94. Surface Area of a Silo. A silo is a structure that is shaped like a right circular cylinder with a half sphere on top. The surface area of a silo of height h and radius r (including the area of the base) is given by the polynomial $2 \pi r h+\pi r^{2}$. (Note that h is the height of the entire silo.) Find an equivalent expression by factoring out a common factor. $\pi r(2 h+r)$

95. Total Profit. When x hundred gaming systems are sold, Rolics Electronics collects a profit of $P(x)$, where

$$
P(x)=x^{2}-3 x, \quad P(x)=x(x-3)
$$

and $P(x)$ is in thousands of dollars. Find an equivalent expression by factoring out a common factor.
96. Total Profit. After t weeks of production, Claw Foot, Inc., is making a profit of $P(t)=t^{2}-5 t$ from sales of their surfboards. Find an equivalent expression by factoring out a common factor.
$P(t)=t(t-5)$
97. Total Revenue. Urban Sounds is marketing a new MP3 player. The firm determines that when it sells x units, the total revenue R is given by the polynomial function

$$
R(x)=280 x-0.4 x^{2} \text { dollars }
$$

Find an equivalent expression for $R(x)$ by factoring out $0.4 x . \quad R(x)=0.4 x(700-x)$
98. Total Cost. Urban Sounds determines that the total cost C of producing x MP3 players is given by the polynomial function

$$
C(x)=0.18 x+0.6 x^{2}
$$

Find an equivalent expression for $C(x)$ by factoring out $0.6 x . \quad C(x)=0.6 x(0.3+x)$
99. Counting Spheres in a Pile. The number N of spheres in a triangular pile like the one shown here is a polynomial function given by

$$
N(x)=\frac{1}{6} x^{3}+\frac{1}{2} x^{2}+\frac{1}{3} x
$$

where x is the number of layers and $N(x)$ is the number of spheres. Find an equivalent expression for $N(x)$ by factoring out $\frac{1}{6} . \quad N(x)=\frac{1}{6}\left(x^{3}+3 x^{2}+2 x\right)$

$$
f(n)=\frac{1}{2}\left(n^{2}-n\right)
$$

100. Number of Games in a League. If there are n teams in a league and each team plays every other team once, we can find the total number of games played by using the polynomial function $f(n)=\frac{1}{2} n^{2}-\frac{1}{2} n$. Find an equivalent expression by factoring out $\frac{1}{2}$.
101. High-fives. When a team of n players all give each other high-fives, a total of $H(n)$ hand slaps occurs, where

$$
H(n)=\frac{1}{2} n^{2}-\frac{1}{2} n . \quad H(n)=\frac{1}{2} n(n-1)
$$

Find an equivalent expression by factoring out $\frac{1}{2} n$.
102. Number of Diagonals. The number of diagonals of a polygon having n sides is given by the polynomial function

$$
P(n)=\frac{1}{2} n^{2}-\frac{3}{2} n .
$$

Find an equivalent expression for $P(n)$ by factoring out $\frac{1}{2} n . \quad P(n)=\frac{1}{2} n(n-3)$

Solve using the principle of zero products.
103. $(x+3)(x-4)=0 \quad-3,4$
104. $(x+10)(x+11)=0 \quad-11,-10$
105. $x(x+1)=0 \quad-1,0$
106. $5 x(x-2)=0 \quad 0,2$
107. $x^{2}-3 x=0 \quad 0,3$
108. $2 x^{2}+8 x=0 \quad-4,0$
109. $-5 x^{2}=15 x-3,0$
110. $2 x-4 x^{2}=0 \quad 0, \frac{1}{2}$
111. $12 x^{4}+4 x^{3}=0 \quad-\frac{1}{3}, 0$
112. $21 x^{3}=7 x^{2} \quad 0, \frac{1}{3}$
113. Given that $f(x)=(x-3)(x+7)$, find all values of a for which $f(a)=0 . \quad-7,3$
114. Given that $f(x)=(3 x+1)(x+8)$, find all values of a for which $f(a)=0 . \quad-8,-\frac{1}{3}$
115. Given that $f(x)=2 x(5 x+9)$, find all values of a for which $f(a)=0 . \quad 0,-\frac{9}{5}$
116. Given that $f(x)=8 x(x-1)$, find all values of a for which $f(a)=0 . \quad 0,1$
117. Given that $f(x)=x^{3}-3 x^{2}$, find all values of a for which $f(a)=0 . \quad 0,3$
118. Given that $f(x)=6 x+9 x^{2}$, find all values of a for which $f(a)=0 . \quad 0,-\frac{2}{3}$
TN 119. Write a two-sentence paragraph in which the word "factor" is used at least once as a noun and once as a verb.
TW 120. Jasmine claims that the zeros of the function given by $f(x)=x^{4}-3 x^{2}+7 x+20$ are $-1,1,2,4$, and 5 . How can you tell, without performing any calculations, that she cannot be correct?

SKILL REVIEW

To prepare for Section 5.4, review multiplying binomials using FOIL (Section 5.2).
Multiply. [5.2]
121. $(x+2)(x+7) x^{2}+9 x+14$
122. $(x-2)(x-7) x^{2}-9 x+14$
123. $(x+2)(x-7) x^{2}-5 x-14$
124. $(x-2)(x+7) x^{2}+5 x-14$
125. $(a-1)(a-3) a^{2}-4 a+3$
126. $(t+3)(t+5) t^{2}+8 t+15$
127. $(t-5)(t+10) t^{2}+5 t-50$
128. $(a+4)(a-6) a^{2}-2 a-24$

SYNTHESIS

TW 129. Ashlee factors $8 x^{2} y-10 x y^{2}$ as

$$
2 x y \cdot 4 x-2 x y \cdot 5 y .
$$

Is this the factorization of the polynomial? Why or why not?
TW 130. What is wrong with solving $x^{2}=3 x$ by dividing both sides of the equation by x ?
131. Use the results of Exercise 21 to factor $x^{2}+2 x-8$. $(x+4)(x-2)$
132. Use the results of Exercise 22 to factor $x^{2}-2 x+1$. $(x-1)(x-1) \quad x^{5} y^{4}+x^{4} y^{6}=x^{4} y^{4}\left(x+y^{2}\right)$
Complete each of the following factorizations.
133. $x^{5} y^{4}+$ \qquad $=x^{4} y^{4}($ \qquad $+y^{2}$)
134. $a^{3} b^{7}-$ \qquad $=$ $-\left(a b^{4}-c^{2}\right)$ $a^{3} b^{7}-a^{2} b^{3} c^{2}=a^{2} b^{3}\left(a b^{4}-c^{2}\right)$
Write an equivalent expression by factoring out the smallest power of x in each of the following.
135. $x^{-6}+x^{-9}+x^{-3} \quad x^{-9}\left(x^{3}+1+x^{6}\right)$
136. $x^{-8}+x^{-4}+x^{-6} \quad x^{-8}\left(1+x^{4}+x^{2}\right)$
137. $x^{1 / 3}-5 x^{1 / 2}+3 x^{3 / 4} \quad x^{1 / 3}\left(1-5 x^{1 / 6}+3 x^{5 / 12}\right)$
138. $x^{3 / 4}+x^{1 / 2}-x^{1 / 4} x^{1 / 4}\left(x^{1 / 2}+x^{1 / 4}-1\right)$

Factor:
139. $\left.5 x^{5}-5 x^{4}+x^{3}-x^{2}+3 x-x^{3}-1\right)\left(5 x^{4}+x^{2}+3\right)$
140. $a x^{2}+2 a x+3 a+x^{2}+2 x+3$

$$
\left(x^{2}+2 x+3\right)(a+1)
$$

Write an equivalent expression by factoring. Assume that all exponents are natural numbers.
141. $2 x^{3 a}+8 x^{a}+4 x^{2 a} \quad 2 x^{a}\left(x^{2 a}+4+2 x^{a}\right)$
142. $3 a^{n+1}+6 a^{n}-15 a^{n+2} \quad 3 a^{n}\left(a+2-5 a^{2}\right)$

